skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sinha, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized LiD 6 target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved. Published by the American Physical Society2024 
    more » « less
  2. The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV / c π beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function. Published by the American Physical Society2024 
    more » « less
  3. Optical projection tomography (OPT) is a powerful imaging modality for attaining high resolution absorption and fluorescence imaging in tissue samples and embryos with a diameter of roughly 1 mm. Moving past this 1 mm limit, scattered light becomes the dominant fraction detected, adding significant “blur” to OPT. Time-domain OPT has been used to select out early-arriving photons that have taken a more direct route through the tissue to reduce detection of scattered photons in these larger samples, which are the cause of image domain blur1. In addition, it was recently demonstrated by our group that detection of scattered photons could be further depressed by running in a “deadtime” regime where laser repetition rates are selected such that the deadtime incurred by early-arriving photons acts as a shutter to later-arriving scattered photons2. By running in this deadtime regime, far greater early photon count rates are achievable than with standard early photon OPT. In this work, another advantage of this enhanced early photon collection approach is demonstrated: specifically, a significant improvement in signal-to-noise ratio. In single photon counting detectors, the main source of noise is “afterpulsing,” which is essentially leftover charge from a detected photon that spuriously results in a second photon count. When the arrival of the photons are time-stamped by the time correlated single photon counting (TCSPC) module , the rate constant governing afterpusling is slow compared to the time-scale of the light pulse detected so it is observed as a background signal with very little time-correlation. This signal is present in all time-gates and so adds noise to the detection of early photons. However, since the afterpusling signal is proportional to the total rate of photon detection, our enhanced early photon approach is uniquely able to have increased early photon counts with no appreciable increase in the afterpulsing since overall count-rate does not change. This is because as the rate of early photon detection goes up, the rate of late-photon detection reduces commensurately, yielding no net change in the overall rate of photons detected. This hypothesis was tested on a 4 mm diameter tissue-mimicking phantom (μa = 0.02 mm-1, μs’ = 1 mm-1) by ranging the power of a 10 MHz pulse 780-nm laser with pulse spread of < 100 fs (Calmar, USA) and an avalanche photodiode (MPD, Picoquant, Germany) and TCSPC module (HydraHarp, Picoquant, Germany) for light detection. Details of the results are in Fig. 1a, but of note is that we observed more than a 60-times improvement in SNR compared to conventional early photon detection that would have taken 1000-times longer to achieve the same early photon count. A demonstration of the type of resolution possible is in Fig 1b with an image of a 4-mm-thick human breast cancer biopsy where tumor spiculations of less than 100 μm diameter are observable. 1Fieramonti, L. et al. PloS one (2012). 2Sinha, L., et al. Optics letters (2016). 
    more » « less
  4. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less